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Evolutionary algorithms

• Evolutionary algorithms are algorithms which employ Darwin’s

theory of the survival of the fittest as their inspiration.

• They keep a population of solutions and generate new solutions

using crossover and mutation operators;

• They needs a fitness function specification which tells how good is a

solution;

• They are used to solve problems when there is not any

problem-specific algorithm that gives a satisfactory solution in

reasonable time.
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Evolutionary algorithms - Applications
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Evolutionary algorithms - objective

Evolutionary algorithms can be classified according to their number of

objectives (number of fitness function) as mono-objective and

multi-objective algorithms.

• Mono-objective evolutionary algorithms:

• Genetic Algorithm (GA) [5]

• Multi-objective evolutionary algorithms (MOEA):

• Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [4]

• Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17]

• Indicator-Based Evolutionary Algorithm (IBEA) [16]
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Evolutionary algorithms - Pareto Front

Figure 1: Two objectives Pareto Front 5



Evolutionary Algorithms - How to choose one?

Choosing an evolutionary algorithm is not a trivial task. Different

evolutionary algorithms produce different results when applied to different

problems. Thus to choose an Evolutionary algorithm we have to:

• Use literature recommendations;

• Perform a tuning and choose the best algorithm considering a

quality indicator.
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Evolutionary Algorithms - How to choose one?
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Evolutionary Algorithms - How to choose one?

Choosing an evolutionary algorithm is not a trivial task. Different

evolutionary algorithms produce different results when applied to different

problems. Thus to choose an Evolutionary algorithm we have to:

• Use literature recommendations;

• Perform a tuning and choose the best algorithm considering a

quality indicator.

• Use a hyper-heuristic
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Evolutionary algorithms - How to choose one?
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Hyper-heuristic - Selection Method

Usually Hyper-heuristics employ a selection method. It can be:

• Roulette;

• A choice function;

• Multi-Armed Bandit approaches;
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Related Work

• Multi-objective Selection hyper-heuristics, but not agent-based:

• Vázquez-Rodŕıguez and Petrovic [14];

• Maashi et al. [9];

• Mono-objective Selection agent-based hyper-heuristics:

• Aydin and Fogarty [2];

• Milano and Roli [10] al. [9];

• Talbi and Bachelet [12].

• Multi-objective Selection agent-based hyper-heuristics:

• Acan and Lotfi [1];
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Motivations

• Choosing an EA is not a trivial task;

• Agent-based approaches seems suitable for this kind of problem;

• Multi-objective hyper-heuristics are on the state of art;

• Social Choice Theory provides interesting background that can be

used to solve the algorithms selection problem.
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Our proposal

We propose the Multi-Objective Agent-Based Hyper-Heuristic

(MOABHH) which has the following characteristics:

• Share a population of solutions among a set of Multi-Objective

Evolutionary Algorithms (MOEA);

• Gives a bigger population share to the best algorithm according to

voting results;

• Perform a voting method using quality indicators as voters;

• Copeland voting method.
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Copeland

In order to perform a Copeland voting [3], all candidates are ordered by

the number of pairwise victories, minus the number of pairwise defeats.
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MOABHH - Architecture

Four agents types:

• Problem Manager agent is responsible for all parameters.

• EA Agent contain a particular MOEA instance.

• Indicator Voter agent evaluates every EA Agent according to his own

quality indicator metric.

• Hyper-heuristic agent defines how many solutions each EA Agent

will receive.

Four artifacts types:

• System variables artifact keeps the problem specification and

MOABHH parameters.

• Population artifact, keeps the main current population of solutions.

• Population share artifact contains which solutions will be used by

each evolutionary algorithm during the next generation.

• Copeland artifact keeps all voting information.
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MOABHH - Population Sharing

Figure 2: Population Sharing
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MOABHH - Votation

Figure 3: Voting method. First, all Indicator voter agents rank EA Agents

based on their results.
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MOABHH - Votation

Figure 4: Voting method. In step 2 the Copeland voting is performed. In step

3 the Copeland ranking is generated.

18



MOABHH - Population Sharing

Figure 5:
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MOABHH - Implementation

• Agents developed in Java JDK 8;

• MOEAs from jMetal framework;

• Artifacts from Cartago framework.
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Quality Indicators

There are different indicators to assess the quality of an algorithm:

Quality Indicator Formula

Ratio of non-dominated solutions (RNI) [13] |NonDominated(S)|
|S|

Hypervolume [18] volume(∪|S|i=1vi )

Generational Distance (GD) [11]
(
∑|S|

i=1 d
q
i )

1
q

|S|

Inverted Generational Distance (IGD) [19]
(
∑|P|

i=1 d
q
i )

1
q

|P|

Spread [11]
df +dl+

∑|S|−1
i=1 |di−d|

df +dl+(|S|−1)d
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Experiments - Configuration

• 5 algorithms:

• IBEA;

• SPEA2;

• NSGA-II;
• MOABHH

• Random algorithm selection (RDN) among IBEA, SPEA2 and

NSGA-II;

• Copeland algorithm selection (CPL) among IBEA, SPEA2 and

NSGA-II;

• 40 independent runs.

• Kruskal-Wallis test with 5% of significance level.
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Experiments - Used Benchmark

In our experiments we employed the Walking Fish Group. (WFG) [7]

benchmark.

Table 1: WFG characteristics, extracted from [7].

Problem Separability Modality Bias Geometry

WFG1 separable uni polynominal, flat convex, mixed

WFG2 non-separable uni - convex, disconnected

WFG3 non-separable uni - linear, degenerate

WFG4 separable multi - concave

WFG5 separable deceptive - concave

WFG6 non-separable uni - concave

WFG7 separable uni parameter dependent concave

WFG8 non-separable uni parameter dependent concave

WFG9 non-separable multi, deceptive parameter dependent concave
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Hypervolume results for two objectives

Figure 6: Result example where dashed lines means statistical ties
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Hypervolume results for two objectives
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Hypervolume results for three objectives
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IGD results for two objectives
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IGD results for three objectives

Figure 7: IGD results for two and three objectives.
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Overall results

Quality Indicator Two objectives Three objectives

Hypervolume 9/9 9/9

IGD 7/9 8/9

GD 8/9 2/9

Spread 5/9 6/9

RNI 9/9 7/9

Table 2: Number of problems where CPL has achieved MOEA best results
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Results - Time

Figure 8: Average time (in minutes) for 2 objectives WFG suite
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Results - Time

Figure 9: Average time (in minutes) for 3 objectives WFG suite
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Conclusions

MOABHH-CPL has competitive results against the studied algorithm

with little addition of computational effort. However, MOABHH-CPL

removes from user the effort choosing the best MOEA.
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Future work

• Use different meta-heuristic, such as MOEA/D-DRA [15],

MOEA/D-DD [8] and MOMBI-II [6];

• Use different voting methods;

• Solve up to ten objectives problems;

• Apply MOABHH to different problems.
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MOABHH - Pseudocode

Algorithm 1: MOABHH Pseudocode.

1 Input: Problem, MOABHH params
2 begin
3 Initialize agents and artifacts;
4 Generate a random population of solutions;
5 while Training do
6 Uniformly share the population among EA Agents;
7 EA Agents execute for one generation;
8 Update the main population;
9 end

10 while Executing do
11 Evaluate EA Agents qualities;
12 Perform the voting method;
13 Share population among EA Agents according to voting results;
14 EA Agents execute for γ generations;
15 Update the main population;
16 end
17 return Main population
18 end

Where γ = 12 36



HH Assign

Algorithm 2: HH Assign

1 begin
2 if There is more than two MHAgents active then

3 HH Agent assigns more (β ∗ 0.75) percent of the population share for
the election winner, more (β ∗ 0.25) for second place winner and
removes β percent from the last voted;

4 end
5 else

6 HH Agent assigns more β percent of the population share for the
election winner and removes β percent of the population share from
the less voted;

7 end
8 end

Where β = 3
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