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Evolutionary algorithms

e Evolutionary algorithms are algorithms which employ Darwin’s
theory of the survival of the fittest as their inspiration.

e They keep a population of solutions and generate new solutions
using crossover and mutation operators;

e They needs a fitness function specification which tells how good is a

solution;

e They are used to solve problems when there is not any
problem-specific algorithm that gives a satisfactory solution in
reasonable time.



Evolutionary algorithms - Applications
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Evolutionary algorithms - objective

Evolutionary algorithms can be classified according to their number of
objectives (number of fitness function) as mono-objective and
multi-objective algorithms.

e Mono-objective evolutionary algorithms:
e Genetic Algorithm (GA) [5]
e Multi-objective evolutionary algorithms (MOEA):
e Non-Dominated Sorting Genetic Algorithm Il (NSGA-II) [4]

e Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17]
e Indicator-Based Evolutionary Algorithm (IBEA) [16]



Evolutionary algorithms - Pareto Front

Pareto Front Example
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Figure 1: Two objectives Pareto Front 5



Evolutionary Algorithms - How to choose one?

Choosing an evolutionary algorithm is not a trivial task. Different
evolutionary algorithms produce different results when applied to different
problems. Thus to choose an Evolutionary algorithm we have to:

e Use literature recommendations;

e Perform a tuning and choose the best algorithm considering a
quality indicator.



Evolutionary Algorithms - How to choose on
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Evolutionary Algorithms - How to choose one?

Choosing an evolutionary algorithm is not a trivial task. Different
evolutionary algorithms produce different results when applied to different
problems. Thus to choose an Evolutionary algorithm we have to:

e Use literature recommendations;

e Perform a tuning and choose the best algorithm considering a
quality indicator.

e Use a hyper-heuristic



Evolutionary algorithms - How to choose one?
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Hyper-heuristic - Selection Method

Usually Hyper-heuristics employ a selection method. It can be:

e Roulette;
e A choice function;

e Multi-Armed Bandit approaches;
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Related Work

e Multi-objective Selection hyper-heuristics, but not agent-based:

e Vizquez-Rodriguez and Petrovic [14];
e Maashi et al. [9];

e Mono-objective Selection agent-based hyper-heuristics:
e Aydin and Fogarty [2];
e Milano and Roli [10] al. [9];
e Talbi and Bachelet [12].

e Multi-objective Selection agent-based hyper-heuristics:
e Acan and Lotfi [1];
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Choosing an EA is not a trivial task;

Agent-based approaches seems suitable for this kind of problem;

Multi-objective hyper-heuristics are on the state of art;

Social Choice Theory provides interesting background that can be
used to solve the algorithms selection problem.
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Our proposal

We propose the Multi-Objective Agent-Based Hyper-Heuristic
(MOABHH) which has the following characteristics:

e Share a population of solutions among a set of Multi-Objective
Evolutionary Algorithms (MOEA);

e Gives a bigger population share to the best algorithm according to
voting results;

e Perform a voting method using quality indicators as voters;

e Copeland voting method.
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In order to perform a Copeland voting [3], all candidates are ordered by
the number of pairwise victories, minus the number of pairwise defeats.

Candidates |Wins|Losses|Wins-Losses |Final Rank

Candidate#1| 4 -1 3 1
Candidate#2| 3 -3 0 2
Candidate#3| 1 -4 -3 3
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MOABHH - Architecture

Four agents types:

e Problem Manager agent is responsible for all parameters.

e EA Agent contain a particular MOEA instance.

e Indicator Voter agent evaluates every EA Agent according to his own
quality indicator metric.

e Hyper-heuristic agent defines how many solutions each EA Agent

will receive.

Four artifacts types:

e System variables artifact keeps the problem specification and
MOABHH parameters.
e Population artifact, keeps the main current population of solutions.
e Population share artifact contains which solutions will be used by
each evolutionary algorithm during the next generation.
e Copeland artifact keeps all voting information.
15



MOABHH - Population Sharing
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Figure 2: Population Sharing
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MOABHH - Votation
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Figure 3: Voting method. First, all Indicator voter agents rank EA Agents
based on their results.

17



MOABHH - Votation

« One-on-one contest
o EAAgent#1 x EA Agent#2 on Voter #1
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Figure 4: Voting method. In step 2 the Copeland voting is performed. In step

3 the Copeland ranking is generated.
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MOABHH - Population

Sharing
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MOABHH - Implementation

e Agents developed in Java JDK §;
e MOEAs from jMetal framework;

e Artifacts from Cartago framework.
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Quality Indicators

There are different indicators to assess the quality of an algorithm:

Quality Indicator ‘ Formula
Ratio of non-dominated solutions (RNI) [13] w
Hypervolume [18] vo/ume(Uls‘ Vi)
. . (2\5\ d’-‘l)

Generational Distance (GD) [11] =

. . (Z\P\ dq)%
Inverted Generational Distance (IGD) [19] =

dr+d+31% " |di—d|

Spread [11] PR
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Experiments - Configuration

e 5 algorithms:
e |IBEA;
SPEA2;
NSGA-II;
¢ MOABHH

e Random algorithm selection (RDN) among IBEA, SPEA2 and
NSGA-II;

e Copeland algorithm selection (CPL) among IBEA, SPEA2 and
NSGA-II;

e 40 independent runs.

e Kruskal-Wallis test with 5% of significance level.
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Experiments - Used Benchmark

In our experiments we employed the Walking Fish Group. (WFG) [7]

benchmark.
Table 1: WFG characteristics, extracted from [7].
Problem‘Separability Modality Bias Geometry
WEFG1 |separable uni polynominal, flat convex, mixed
WFG2 |non-separable uni - convex, disconnected
WFG3 |non-separable uni - linear, degenerate
WFG4 |separable multi - concave
WEFG5 |separable deceptive - concave
WEFG6 |non-separable uni - concave
WFG7 |separable uni parameter dependent concave
WEFG8 |non-separable uni parameter dependent concave
WFG9 |non-separable multi, deceptive parameter dependent concave
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Hypervolume results for two objectives

WFG1 2 objectives

Figure 6: Result example where dashed lines means statistical ties
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Hypervolume results for two objectives

WFG1 2 objectives WFG6 2 objectives

WFG2 2 objectives

1 [] ] [
0557 ' 05583 ® 05582 ' 0.5585 " 0.5583
| o— i1 1 IT;

1 1 1
102097 1 02073 02085 (2061 1 0.2095 1
M N — I 1 o I |

mo

1= 1 nsea ]

""" WFGS 2 objectives "~ -

!
H H : HE R
1 04405 1 04383 04388 04382 104411 1| | 1 01619 01629 01605
r | I o Lo I ] e 1
|

| _ma_ 1 e e me 1ol oA e o
WFG4 2 objectives WFG9 2 objectives
L}
12T 02145 02158 og9 ;021761 -. 0199 (4915 0193 101988,
Ve 1 e e mo ) oo ) e e o
""" WEFGS5 2 objectives =~~~
[ | [
' ' '
1 01958 1 01942 01951 01937 1 0.1958 1
r | I )
L m ) e we mo 1 o
== |BEA NSGA-Il === SPEA2 RND = CPL

25



Hypervolume results for three objectives
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IGD results for two objectives
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IGD results for three objectives
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Overall results

Quality Indicator Two objectives Three objectives

Hypervolume 9/9 9/9
IGD 7/9 8/9
GD 8/9 2/9
Spread 5/9 6/9
RNI 9/9 7/9

Table 2: Number of problems where CPL has achieved MOEA best results
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Results - Time
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Figure 8: Average time (in minutes) for 2 objectives WFG suite
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Results - Time
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Conclusions

MOABHH-CPL has competitive results against the studied algorithm
with little addition of computational effort. However, MOABHH-CPL
removes from user the effort choosing the best MOEA.
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Use different meta-heuristic, such as MOEA/D-DRA [15],
MOEA/D-DD [8] and MOMBI-II [6];

Use different voting methods;

Solve up to ten objectives problems;
Apply MOABHH to different problems.
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MOABHH - Pseudocode

Algorithm 1: MOABHH Pseudocode.
Input: Problem, MOABHH params

© 00 NG E WN =

11
12
13
14
15
16
17
18

beg

end

in

Initialize agents and artifacts;

Generate a random population of solutions;

while Training do

Uniformly share the population among EA Agents;
EA Agents execute for one generation;

Update the main population;

end

while Executing do

Evaluate EA Agents qualities;

Perform the voting method;

Share population among EA Agents according to voting results;
EA Agents execute for v generations;

Update the main population;

end
return Main population

Where v = 12 36



HH Assign

Algorithm 2: HH Assign

1 begin
2 if There is more than two MHAgents active then

3 HH Agent assigns more (3 % 0.75) percent of the population share for
the election winner, more (8 x 0.25) for second place winner and
removes (3 percent from the last voted,;

4 end
5 else
6 HH Agent assigns more (3 percent of the population share for the

election winner and removes 3 percent of the population share from
the less voted;

end

8 end

Where g =3
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