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Evolutionary algorithms

• Evolutionary algorithms are algorithms which employ Darwin’s

theory of the survival of the fittest as their inspiration.

• They keep a population of solutions and generate new solutions

using crossover and mutation operators;

• They needs a fitness function specification which tells how good is a

solution;

• They are used to solve problems when there is not any

problem-specific algorithm that gives a satisfactory solution in

reasonable time.
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Evolutionary algorithms - objective

Algorithm 1: Generic Evolutionary Algorithm

1 begin

2 Initialize the population with random solutions;

3 Evaluate solutions according to the objective function;

4 while a termination condition is not satisfied do

5 Select parents;

6 Recombine pairs of parents;

7 Mutate the resulting offspring;

8 Evaluate new solutions according to the objective function;

9 Select solutions to compose the next generation;

10 end

11 end
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Evolutionary algorithms - objective

Evolutionary algorithms can be classified according to their number of

objectives (number of fitness functions) as mono-objective and

multi-objective algorithms.

• Mono-objective evolutionary algorithms:

• Genetic Algorithm (GA) [4]

• Multi-objective evolutionary algorithms (MOEA):

• Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [3]

• Strength Pareto Evolutionary Algorithm 2 (SPEA2) [11]

• Indicator-Based Evolutionary Algorithm (IBEA) [10]

• Generalized Differential Evolution (GDE3) [7]
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Quality Indicators in Multi-objective Optimization

There are several quality indicators to tell us how good algorithms

outcomes are:

• Hypervolume;

• Ratio of non-dominated solutions;

• Hyper-area Ratio;

• Pareto Dominance Indicator;

• Uniform distribution of non-dominated population;

• Algorithm Effort;

• Epsilon;

• General Distance;

• Inverted General Distance;
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Evolutionary Algorithms - How to choose one?

Choosing an evolutionary algorithm is not a trivial task. Different

evolutionary algorithms produce different results when applied to different

problems. Thus to choose an Evolutionary algorithm we have to:

• Use literature recommendations OR

• Perform a tuning and choose the best algorithm considering a

quality indicator.
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Hyper-heuristic - Selection Method

Usually Hyper-heuristics employ a selection method. It can be:

• Roulette;

• A choice function;

• Multi-Armed Bandit approaches;

• Social Choice Based Approaches
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MOABHH

We propose the Multi-Objective Agent-Based Hyper-Heuristic

(MOABHH) [2] which has the following characteristics:

• Evolutionary algorithms (EA) as agents (EA Agent);

• Quality Indicators as agents (Indicator Voters);

• Share among EA Agents the number of solutions to generate;

• Allocate a bigger participation in generating new solutions to the top

EA Agents;

• The top EA Agents are defined according to an election outcome,

where Indicator Voters votes;

• We used Copeland voting method.
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MOABHH - Population Sharing

Figure 1: Population Sharing
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MOABHH - Voting

Figure 2: Voting method. First, all Indicator voter agents rank EA Agents

based on their results.
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MOABHH - Voting

Figure 3: Voting method. In step 2 the Copeland voting is performed. In step

3 the Copeland ranking is generated.
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MOABHH - Population Sharing
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Motivations for a real-world application

• We just had performed our studies considering benchmarks:

• WFG

• DTLZ

• ZDT

• CEC09

• Pareto Front in known in advance for benchmarks. Thus we used

IGD and GD as Indicator Voters;

• In real-world problems the Pareto Front is not know in advance;

• Other Indicator Voters have to be used;

• Real-world applications better propagate A.I. knowledge to other

areas;
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Applications: Crashworthiness

(a) A frontal crash
(b) Fender thickness decision variables

Figure 4: Liao et al. 2008

Problem Description:

• 3 objectives: (i) the mass, (ii) an integration of collision acceleration

in the full frontal crash, (iii) the toe-board intrusion.

• 5 decision variables 17



Applications: Car Side Impact

Problem Description:

• 3 objectives: (i) the weight, (ii) the pubic force experienced by a

passenger, (iii) the average velocity of the V-Pillar responsible for

withstanding the impact load.

• 7 decision variables describing the thickness of B-Pillars, floor, cross

members, door beam, roof rail, etc;

• 8 constraints.
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Applications: Machining

Figure 5: A390 aluminum, widely used in automotive industry for cylinder

liners and pistons etc., Source: http://www.alsi-alloys.com

Problem Description:

• 4 objectives: (i) min. the surface roughness, (ii) max. the surface

integrity, (iii) max. the tool life, (iv) maximizing the metal removal

rate.

• 3 decision variables Speed, feed and depth of cut;

• 3 constraints. 19



Applications: Water

Figure 6: Musselman and Talavage, 1980

Problem Description:

• 5 objectives: (i) the drainage network cost, (ii) the storage facility

cost, (iii) the treatment facility cost, (iv) the expected flood damage

cost, and (v) the expected economic loss due to flood.

• 3 decision variables: storage capacity, the maximum treatment rate

and the maximum allowable overflow rate;

• 7 constraints. 20



Experiments - Configuration

• 4 algorithms (candidates):

• IBEA;

• SPEA2;

• NSGA-II;

• GDE3.

• 6 Quality indicators (voters):

• Hypervolume;

• Ratio of non-dominated solutions;

• Hyper-area Ratio;

• Pareto Dominance Indicator;

• Uniform distribution of non-dominated population;

• Algorithm Effort.

• 40 independent runs.

• Kruskal-Wallis test with 1% of significance level.
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Results

Table 1: Hypervolume, IGD and Epsilon Result Table

Problem GDE3 IBEA NSGAII SPEA2 MOABHH

Car Side Impact 4.4342E-01 4.7710E-01 3.7671E-01 4.4507E-01 4.7161E-01
CrashWorthiness 7.3603E-01 7.0594E-01 6.6108E-01 7.2210E-01 7.3985E-01
Water 5.6227E-01 5.0439E-01 4.3440E-01 4.9700E-01 5.8632E-01

Hyp.

Machining 1.8393E-01 2.7348E-01 1.7288E-01 1.7705E-01 2.7118E-01

Car Side Impact 7.8878E-04 8.1957E-04 1.2878E-03 7.5318E-04 6.6803E-04
Crash Worthiness 6.9652E-04 2.6247E-03 1.2639E-03 7.5822E-04 4.2570E-04
Water 1.4869E-03 3.5247E-03 2.1495E-03 1.9045E-03 8.9055E-04

IGD

Machining 1.6902E-03 5.1369E-04 1.6953E-03 1.7521E-03 5.0530E-04

Car Side Impact 1.6403E-01 9.6482E-02 1.9015E-01 1.8226E-01 1.3509E-01
Crash Worthiness 5.3299E-02 1.4667E-01 1.1723E-01 6.4985E-02 4.3900E-02
Water 1.4684E-01 2.5247E-01 2.5750E-01 2.1015E-01 1.1912E-01

Ep.

Machining 4.8167E-01 1.6378E-01 4.9150E-01 5.0770E-01 1.9654E-01
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Conclusions

• MOABHH was very competitive against the MOEAs;

• Most of the cases, it has found better Hypervolume, IGD and

Epsilon averages;

• Sometimes with statistical difference;

• We believe that this makes this approach interesting for engineers to

solve their real-world problems.
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Future work

• Use different meta-heuristic, such as MOEA/D-DRA [9],

MOEA/D-DD [8] and MOMBI-II [5];

• Use different voting methods, such as Kemeny [6] and Borda [1];

• Solve up to ten objectives problems.
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MOABHH - Pseudocode

Algorithm 2: MOABHH Pseudocode.

1 Input: Problem, MOABHH params
2 begin
3 Initialize agents and artifacts;
4 Generate a random population of solutions;
5 while Training do
6 Uniformly share the population among EA Agents;
7 EA Agents execute for one generation;
8 Update the main population;
9 end

10 while Executing do
11 Evaluate EA Agents qualities;
12 Perform the voting method;
13 Share population among EA Agents according to voting results;
14 EA Agents execute for γ generations;
15 Update the main population;
16 end
17 return Main population
18 end

Where γ = 12 27



HH Assign

fx(pos, n) =


2n if pos = 1

0 if pos = n

2n−pos otherwise

 (1)

∀pos ∈ rank
fx(pos, n)∑n
i=1 fx(i , n)

∗ β (2)
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